Collectivite Auteur :
FAO
Année de Publication :
2007
Type : Rapport
Thème : Energie et mines
Couverture :
Maroc
Bioenergy sits at the intersection of three of the world’s great challenges - energy security, climate change, and poverty reduction - and has received an enormous amount of attention in the past few years. Joint work on these issues is vital considering that together, the G8 +5 Countries account for about 55 percent of the world’s population, 70+ percent of global GDP, and about 72 percent of world energy-related and industry CO2 emissions (excluding deforestation). Bioenergy statistics are inadequate and not up to date. They are essential to understand the dynamics of bioenergy systems ; evaluating the role played by different types of biofuels in the energy sector and supply sources ; assessing the share of biomass used (directly and indirectly) for energy purposes ; assessing the role of biofuel in GHG inventories ; and formulating sound policies. According to the best data available, bioenergy provides about 10 percent of the world’s total primary energy supply (47.2 EJ of bioenergy out of a total of 479 EJ in 2005, i.e. 9.85 percent). Most of this is for use in the residential sector (for heating and cooking) and is produced locally. In 2005 bioenergy represented 78 percent of all renewable energy produced. A full 97 percent of biofuels are made of solid biomass, 71 percent of which used in the residential sector. Biomass is also used to generate gaseous and liquid fuels, and growth in demand for the latter has been significant over the last ten years. Biomass provides a relatively small amount of the total primary energy supply (TPES) of the G8 Countries (1-4 percent). Bycontrast, bioenergy is a significant part of the energy supply in the +5 Countries representing from 5-27 percent of TPES. China with its 9000 PJ/yr is the largest user of biomass as a source of energy, followed by India (6000 PJ/yr), USA 2300 PJ/yr, and Brazil (2000 PJ/yr), while bioenergy’s contribution in Canada, France and Germany is around 450 PJ/yr. The bioenergy share in India, China and Mexico is decreasing, mostly as traditional biomass is substituted by kerosene and LPG. However the use of solid biomass for electricity production is important, especially from pulp and paper plants. Bioenergy’s share in total energy consumption is increasing in the G8 Countries especially Germany, Italy and the United Kingdom. There are four key factors driving interest in bioenergy : rising prices for fossil fuels, in particular oil prices ; energy security ; climate change ; and rural development. Bioenergy markets are largely policy dependent in most of the world, as the production of biofuels in most countries is not at this point competitive with fossil fuels. Nearly all countries reported that energy security and climate change are the most important drivers of their bioenergy development activities. Overall there are few differences between the policy objectives of G8 Countries and the +5 Countries. Rural development is more central to the +5 Countries’ focus on bioenergy development, and this is often aligned with a poverty alleviation agenda. Feed-in tariffs, taxes, guaranteed markets (i.e. renewable energy and fuel mandates, and preferential purchasing), compulsory grid connections, other direct supports (i.e. grants, loan guarantees, subsidies, construction incentives, etc.), and R,D&D are the principal policy mechanisms being deployed by the G8 +5 Countries to encourage bioenergy development. Bioenergy markets are further influenced by general energy, agriculture and forestry, climate change, and environmental policies. Feed-in tariffs are currently the world’s most widespread national renewable energy policy and are in use in over half of the G8 +5 Countries. They are often crafted for renewable energy generally but are sometimes directed at bioenergy specifically. The feed-in tariff is the policy tool that has been most effective in stimulating renewable energy markets, however feed-in tariffs need to be differentiated by technology and biomass treated individually, in order to specifically boost bioenergy. A variety of tax incentives and penalties are used by governments to foster bioenergy development and they are one of the most widely used support instruments. Taxes affect the cost-competitiveness of bioenergy vs. substitutes and therefore bioenergy viability in the marketplace. National targets and public incentive systems have been effectively used in many countries, in particular for liquid biofuels for transport. Among the G8 +5 Countries, only Russia has not created a transport biofuel target. Voluntary quota systems or targets are common for biomass energy for heat, power and transport fuels in the G8 Countries, however, blending mandates enforceable via legal mechanisms are becoming increasingly utilized. Blending targets are less established in the +5 Countries but they are under discussion or awaiting approval. Preferential purchasing by governments can also be a powerful tool when effectively implemented. In policies relating to biofuels for transport, there is a trend towards policies such as blending mandates which don’t require direct government funding, although publicly financed support remains significant. Most countries use some form of direct loans or grants. The G8 +5 Governments are conducting research and development in their own laboratories and institutes and many are supporting public private partnerships and various forms of demonstration projects. Direct supports and R,D&D are being used in a number of G8 Countries to accelerate the commercial development of second generation biofuels for transportation.