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Abstract 

The elasticity of intertemporal substitution (EIS) at the macro level has been estimated mostly 

based on endowment economy models and these estimates are very sensitive to the choice of 

interest rates that are used for estimation. Estimates based on production economy models do 

not need information on interest rates but require endogenous growth models that are free from 

both scale effects and the strong influence of population growth. Such a model is constructed 

and EIS is estimated without information on interest rates. The result indicates that EIS at the 

macro level is as low as 0.09. 
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I. INTRODUCTION 
 

     The elasticity of intertemporal substitution (EIS) at the macro level has been estimated 

mostly based on endowment economy models.1 Because endowment economy models ignore 

capital, the marginal product of capital plays no role in the models and an exogenously given 

real interest rate represents all aspects of production. Hence, information on interest rates or 

returns on assets are indispensable to estimate EIS based on an endowment economy model. As 

a result, these estimates are very sensitive to the choice of interest rates or returns on assets that 

are used for estimation. It is a serious problem because there are various interest rates and 

returns on assets. They are diverse widely because they are determined not only by the marginal 

product of capital but by other various factors e.g. taxes, regulations, the depreciation of capital, 

risks and so on. As a result, very different values of EIS are estimated according to interest rates 

and returns on assets that are used for estimation. This problem is particularly emphasized in 

Mulligan (2002, 2004) and McGrattan and Prescott (2003).  

The purpose of the paper is to explore an estimation method of EIS that does not require 

information on interest rates or returns on assets, i.e. an estimation method that is based not on 

an endowment economy but on a production economy. In a production economy, the familiar 

Euler equation in case of a Harrod neutral production function is 
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where ρ is EIS, yt is output per capita, ct is consumption per capita, kt is capital input per capita, 

n is the growth rate of population, δ is the rate of depreciation, θ is the rate of time preference, 

and α is a constant. Thereby, if the values of n, δ, θ, α as well as the growth rate of consumption 

                                                           
1 There are numerous estimates. See e.g. Mehra and Prescott (1985), Hall (1988), Campbell and Mankiw (1989), 

Kandel and Stambaugh (1991), Epstein and Zin (1991), Cochrane and Hansen (1992), Obstfeld (1994), and Ogaki 

and Reinhart (1998). 
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t

t

c

c&
 and the output/capital ratio 

t

t

k

y
 are given, the elasticity of intertemporal substitution ρ can 

be estimated without information on interest rates or returns on assets. The problem is that this 

Euler equation is obtained in a model without a mechanism of endogenous growth. If no 

endogenous mechanism of growth exists, a production economy approaches a steady state such 

that ( ) 01 =−−−− θδn
k

y
α

t

t  and 0=
t

t

c

c&
. If exogenous positive technology shocks are given 

continuously, the data on 

t

t

c

c&
 have only information on the growth rate that is attributed to 

exogenous technology shocks. Hence, it is impossible to estimate EIS by this Euler equation. It 

implies that the estimation of EIS in a production economy requires an endogenous growth 

model. 

     However, endogenous growth models also have several serious drawbacks. Early 

endogenous growth models like the familiar “AK” model has a nature that the growth rate of 

output depends crucially on the number of population that is called scale effects. As Jones 

(1995a) argues, scale effects are not supported by observed data. As a result, it is not possible to 

estimate EIS by these endogenous growth models. The problem of scale effects is partially 

solved by Jones’ (1995b) non-scale model. However, the growth of output crucially depends 

instead on the growth of population and is irrelevant to the Euler equation in this model. Hence 

it is still not possible to estimate EIS by this kind of endogenous models. Young (1998), Peretto 

(1998), Aghion and Howitt (1998), and Dinopoulos and Thompson (1998) propose another type 

of model that can eliminate the strong influence of population growth as well as scale effects. 

However, as Jones (1999) argues, this type of models crucially depends on a very special 

assumption and the growth rate of output is irrelevant to the Euler equation. Hence, it is still not 

possible to estimate EIS by this type of endogenous growth models. 

     To estimate EIS in a production economy, therefore, an endogenous growth model that 

firstly is free from both scale effects and the strong influence of population growth and secondly 
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has the property that the growth rate of output is determined by the Euler equation is needed. 

The paper explores such an endogenous growth model. Because the method to estimate EIS that 

is constructed in the paper is independent of those in the previous literature, the result in the 

paper will contribute to the argument about the true value of EIS by showing new independent 

evidence.  

     The paper relates to Mulligan (2002) that seems to be motivated by the same concern 

about the problem of using interest rates. Mulligan (2002) attempts to solve this problem by 

estimating the capital rental rate measured in the National Accounts instead of using data on 

interest rates.2 However, the method proposed in Mulligan (2002) seems unsatisfactory because 

the returns on capital asset are estimated only by rental rates and capital gains are ignored 

because it is assumed that aggregate capital gains net-of-BEA depreciation can be presumed to 

be unforecastable. More importantly, because the model used in Mulligan (2002) is based on an 

endowment economy, it is a variation of the conventional method and is not an alternative 

estimation method. Contrary to Mulligan (2002), the paper explores an alternative estimation 

method that provides estimates of EIS in a production economy. It makes use of the data in the 

National Accounts like Mulligan (2002) but does not require estimates of the returns on capital 

asset. 

     The paper is organized as follows. In section II, after considering various problems 

regarding the estimation of EIS in a production economy, it is concluded that an endogenous 

growth model that firstly is free from both scale effects and the strong influence of population 

growth and secondly has the property that the growth rate of output is determined by the Euler 

equation is needed. Such a model is constructed in section III. In section IV, EIS in a production 

economy is estimated based on the model. Finally some concluding remarks are offered in 

section V. 

                                                           
2 In Mulligan (2002), the capital rental rate is defined as the amount of capital income net-of-depreciation that is 

earned per dollar of capital. 



 5 

 

II. EIS IN PRODUCTION ECONOMIES 
 

1. Non endogenous growth models 

     In a production economy, the familiar Euler equation in case of a Harrod neutral 

production function such that 
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where Kt is capital input and Lt is labor input, Yt is output and At is knowledge/technology/idea. 

Hence,  

(2) 
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ρ ,  

and if the values of α, n, δ, θ as well as the growth rate of consumption 

t
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c

c&
 and the 

output/capital ratio 

t
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k

y
 are given, the elasticity of intertemporal substitution ρ can be estimated 

by equation (2) without information on interest rates or returns on assets.  

     However, this Euler equation is obtained in a model of an economy without technological 

progress. As a result, 0lim =
∞→

t

t

t c

c&
 and ( ) 0lim1 =−−−−
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θδn
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that 0=
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 and ( ) 01 =−−−− θδn
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t

t  at steady states, i.e. both numerator and denominator 

on the right side of equation (2) are zero, it is not possible to estimate EIS by equation (2). 

Furthermore, even if exogenous technological progress is assumed, it is still difficult to estimate 

EIS by equation (2) because two different processes confound the data on 

t

t

c

c&
: one is the shift of 
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steady state by technological progress and the other is the transition process to steady state after 

deviation. Just after a positive technology shock, consumption jumps to a transition path to the 

new steady state and moves on this transition path. The observed data on 

t

t

c

c&
 consists of both 

these jumps and the following transition processes.3 Although these jumps by technological 

progress are irrelevant to equations (2), they are included in the observed data on 

t

t

c

c&
. Hence, 

without distinguishing these jumps from transition processes, it is impossible to estimate EIS by 

the observed data on 

t

t

c

c&
 and equation (2). If positive technology shocks occur continuously, 

the growth rate of consumption is constant such that ζ
c

c

t

t =
&

 where ξ is a constant and indicates 

only the growth rate attributed to technological progress. In this case, the observed data on the 

growth of consumption growth reflect only the growth of consumption caused by technological 

progress and there is no information on the movement of consumption relating to transition 

processes. As a result, even if exogenous technological progress is presumed, it is difficult to 

estimate EIS by equation (2). 

     If transition processes can be distinguished from jumps initiated by technological progress, 

it may be possible to estimate EIS by the observed data on 

t

t

c

c&
. One possible way to distinguish 

transition processes from jumps is to exclude a trend in consumption from the observed data on 

consumption. However, there are various detrending methods and estimated trends are very 

different according to these detrending methods. The difference among them appears much 

wider than that among interest rates. In addition, estimated trends may not reflect only 

                                                           

3 The growth rate 

t

t

c

c&
 attributed to the transition process decreases gradually to zero as the accumulation of capital 

proceeds and an economy approaches the new steady state. 
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technology shocks but other various shocks. Hence, it seems hard to distinguish transition 

processes precisely from jumps caused by technological progress. In sum, it is very difficult to 

estimate EIS in a production economy by equation (2). Therefore EIS has not been estimated 

based on models of production economy.  

 

2. Endogenous growth models 

     If an endogenous mechanism of growth is expressed by α, n, δ, θ as well as 

t

t

c

c&
 and 

t

t

k

y
, 

and if this mechanism is reflected in the Euler equation, it is not necessary to distinguish the 

technology progress from the transition process and EIS in a production economy can be 

estimated without information on interest rates or returns on assets. It implies that an 

endogenous growth model is needed to estimate EIS in a production economy. However, 

endogenous growth models have other serious drawbacks and it is still difficult to estimate EIS 

in a production economy. 

     In any endogenous growth model with a constant growth rate, the growth rate of 

consumption is 
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 where ψ is a constant and χ(·) is a function, and the 

ratio 

t
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k

A
 does not decrease as the stock of capital increases but is constant at any time because 

of a mechanism of endogenous growth. Since the ratio 

t

t

k

A
 is constant, the equation 
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1=−  holds at any time where φ1 is a constant. Early endogenous growth models like 

the familiar “AK” model explicitly or implicitly assume a linear relation between At 

and ( )ttt LkK =  such that 
t

t
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2 ==  where φ2 is a constant.
4

 Hence, 

                                                           
4 Early human capital-based endogenous growth models are also categorized to this class of models. 
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( )[ ]θδnLφψχρ
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 and the number of population Lt plays a crucial role for economic 

growth which is called scale effects. In these models, EIS therefore is expressed by 

( ) θδnLφψχ
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. Hence, given the values of ψ , 
2φ , Lt, nt, θ and 
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 as well as the 

functional form of χ(·), EIS can be estimated. Among them, the value of 
2φ  is hard to estimate. 

The only way to estimate the value of 
2φ  may be to take regression over cross country data on 

t

t

t

t

t Lφ
k

Kφ

k

A
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2 == . However, it is difficult to obtain an appropriate and stable estimate of 
2φ  by 

the regression because, as Jones (1995a) argues, scale effects are not supported by observed data 

in many countries and many researchers agree that the relation 
t

t

t

t

t Lφ
k
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A
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2 ==  does not exist 

in reality. As a result, it is difficult to estimate EIS by the Euler equation 
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. 

     The problem of scale effects is partially solved by Jones (1995b). However, his non-scale 

model does not solve the problem to estimate EIS in a production economy on the basis of 

endogenous growth models because, although non-scale models are free from scale effects, they 

are under the strong influence of population growth. Non-scale models focus on the relation 

between Lt and At instead of the linear relation between Kt and At and assume that there is a 

linear relation between 
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satisfies both the equation 
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1=−  and a “balanced growth path.”5 A problem of 
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 and is irrelevant to the Euler equation. Hence, it is impossible to estimate EIS by this type 

of models. To sum up, non-scale models originally developed by Jones (1995b) appear still 

inappropriate to estimate EIS in a production economy.  

     To eliminate the strong influence of population growth, Young (1998), Peretto (1998), 

Aghion and Howitt (1998), and Dinopoulos and Thompson (1998) propose the third approach. 
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economy can grow at a constant rate 
41φφ . This type of models can eliminate the strong 

influence of population growth as well as scale effects. However, Jones (1999) argues that it 

crucially depends on a very special assumption such that 15 =φ , which means that 
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, i.e. 

                                                           
5 A balanced growth path is defined as a growth path on which all variables are growing at constant (exponential) 

rates. 
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knowledge/technology/idea grows autonomously. As a result, the growth rate of consumption is 

not determined by the Euler equation but by autonomously growing knowledge/technology/idea. 

As a result, it is impossible to estimate EIS by the Euler equation. 

     In sum, considering the drawbacks of the above three types of endogenous growth models, 

in order to estimate EIS in a production economy, an endogenous growth model that firstly is 

free from both scale effects and the strong influence of population growth and secondly has the 

property that the growth rate of output is determined by the Euler equation is needed. Such a 

model is constructed in the next section.  

 

III. THE MODEL
6
 

 

1. The basic nature of the model 

     The production function is assumed to be ( )tttt LKAFY ,,= , where Yt (≥ 0) is outputs, Kt 

(≥ 0) is capital inputs, Lt (≥ 0) is labor inputs, and At (≥ 0) is knowledge/technology/idea inputs 

in period t. The model is based on the following assumptions.  

 

Assumptions:  

(A1) The accumulation of capital and knowledge/technology/idea is 
ttttt δKAνCYK −−−= && , 

where ( )0>ν  is a constant and a unit of Kt and 
ν

1
 of a unit of At are produced using the same 

amounts of inputs, and δ  is the rate of depreciation.7 

(A2) Every firm is identical and has the same size, and for any period, constant==
t

ρ

t

L

M
m  

                                                           
6 The model is based on Harashima (2004). See also Harashima (2005a, b). 

7 Hence, like Jones’ (1995b) non-scale model, At, as well as Kt, is produced less as At and Lt increase if the usual 

production function of homogeneous of degree one is assumed. 
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where Mt is the number of firms and ( )1>ρ  is a constant. 
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Assumption (A1) is standard one in the literature of endogenous growth. Assumption (A2) 

simply assumes that the number of population and the number of firms in an economy are 

positively related, which seems intuitively natural. In assumption (A3), the paper assumes that 

returns to investing in Kt and investing in At for a firm are kept equal. However it is also 

assumed in (A3) that a firm that invents a new technology can not obtain all the returns to 

investing in At. This means that investing in At increases Yt but returns of an individual firm that 

invests in At is only a fraction of the increase of Yt such that 
( ) ( )t

t

tt

t

ρ

t
νA

Y

mLνA

Y

M ∂
∂

=
∂
∂ 11

. The 

reason why only a fraction of the increase in Yt the returns of an individual firm is, is 

uncompensated knowledge spillovers to other firms.   

     More specifically, the production function is assumed to have the following functional 

form: ( ) ( )tt
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     For simplicity, the growth rate of population is assumed to be positive and constant, i.e. 

0>= nnt
 hereafter, and in the paper, only the case of Harrod neutral technological progress 
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such that 
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     The optimization problem for a representative household therefore is:  
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8 As is well known, only Harrod neutral technological progress matches the stylized facts presented by Kaldor 

(1961). 
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     The basic nature of the model is as follows.  

Lemma 1: The growth rate of consumption is 

( ) ( )

( )
























−
+−

−











−−−







−

=

−

θ
ααmL

αnδnα
mν

α
αmL

ρ
c

c

t

α

α

t

t

t

1

11
&  

and thus ( )











−−−−







= −

∞→
θδnα

mν

α
ρ

c

c α

α

t

t

t
1lim

&
.  

 

Proof: By equation (4), 
( )

( )
( )












−−−








+−

−
−= −

δnα
mν

α

ααmL

αmL
λλ

α

α

t

t
tt 1

1

1& , and by equation (5),   

( )
( )

( )












−











−−−








+−

−
= −

tt

α

α

t

t
t ckδnα

mν

α

ααmL

αmL
k 1

1

1
& . Hence, by equation (3),  

( ) ( )

( )









′
′′

−

−
+−

−











−−−






−

=

−

u

uc

θ
ααmL

αnδnα
mν

α
αmL

c

c

t

t

α

α

t

t

t 1

11

&

( ) ( )

( )
























−
+−

−











−−−







−

=

−

θ
ααmL

αnδnα
mν

α
αmL

ρ
t

α

α

t

1

11

, 

and thus ( )











−−−−







= −

∞→
θδnα

mν

α
ρ

c

c α

α

t

t

t
1lim

&
 because 0>= n

L

L

t

t
&

 by assumption.  

                                                                  Q.E.D. 

 

Lemma 2: If and only if 

t

t

t
t

t

t k

k

c

c &&

∞→∞→
= limlim = constant, all the optimality conditions are satisfied. 
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Proof: 

(Step 1) By equation (5), 
( )

( )
( )













−











−−−








+−

−
= −

tt

α

α

t

t
t ckδnα

mν

α

ααmL

αmL
k 1

1

1
&  and thus 

( )
( )

( )












−











−−−








+−

−
= −

t

tα

α

t

t

t

t

k

c
δnα

mν

α

ααmL

αmL

k

k
1

1

1&
.  On the other hand, by equation (4), 

( )
( )

( )











−−−








+−

−
−= −

δnα
mν

α

ααmL

αmL

λ

λ α

α

t

t

t

t 1
1

1&
. 

      Here, 
( )

( )
( ) ( )













+











−−−







−−−−







+−

−
−=








+ −−

∞→∞→
t

tα

α

α

α

t

t

t
t

t

t

t

t k

c
δnα

mν

α
δnα

mν

α

ααmL

αmL

k

k

λ

λ
11

1

1
limlim

&&
  

t

t

t k

c

∞→
−= lim . Thereby if 0lim >

∞→
t

t

t k

c
, then 0lim <








+

∞→
t

t

t

t

t k

k

λ

λ &&
. Hence, the transversality condition 

(6) 0lim =
∞→ tt

t
kλ  is not satisfied if and only if 0lim =

∞→
t

t

t k

c
 (Because 0≥tc  and 0≥tk ).  

(Step 2) ( )











−−−−







= −

∞←
θδnα

mν

α
ρ

c

c α

α

t

t

t
1lim

&
 = constant by lemma 1, and 

( )
( )

( )












−











−−−








+−

−
= −

∞→∞→
t

tα

α

t

t

t
t

t

t k

c
δnα

mν

α

ααmL

αmL

k

k
1

1

1
limlim

&
 ( )

t

t

t

α

α

k

c
δnα

mν

α

∞→

− −−−−






= lim1  

by equation (5). If 

t

t

t
t

t

t c

c

k

k &&

∞→∞→
> limlim , then 

t

t

k

c
 diminishes as time passes, then 

t

t

k

k&
 increases. 

Hence, eventually 

t

t

k

c
 diminishes to zero. Therefore, by (step 1), the transversality condition 

(6) is not satisfied. If 

t

t

t
t

t

t c

c

k

k &&

∞→∞→
< limlim , then 

t

t

k

c
 increases as time passes, then 

t

t

k

k&
 diminishes 

and eventually becomes negative. Hence, 
tk  decreases and eventually becomes negative which 

violate the condition 0≥tk . However, if 

t

t

t
t

t

t k

k

c

c &&

∞→∞→
= limlim , then 

t

t

t k

c

∞→
lim  is constant and thus 
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t

t

t k

k&

∞→
lim  and 

t

t

t c

c&

∞→
lim  are constant and identical. 

                                                                  Q.E.D. 

 

Unquestionably rational households will select the initial consumption that leads to a growth 

path that satisfies all the conditions, i.e. a growth path such that  
t

t

t
t

t

t k

k

c

c &&

∞→∞→
= limlim = constant. 

Hence, it is assumed that given the initial A0 and k0, a representative household sets the initial 

consumption so as to achieve a growth path that satisfies all the conditions, i.e. a growth path of  

t

t

t
t

t

t k

k

c

c &&

∞→∞→
= limlim = constant, while firms adjust kt so as to achieve 

( )t
t

ρ

tt

t

νA

Y

MK

Y

∂
∂

=
∂
∂ 1

. As a result 

of rational behavior of households and firms, the following steady state growth path is achieved. 

 

Lemma 3: 

t

t

t
t

t

t
t

t

t
t

t

t k

k

c

c

A

A

y

y &&&&

∞→∞→∞→∞→
=== limlimlimlim = constant 

 

Proof:  

(Step 1) Because ( ) 







+−








= t

t

t
t

α

t

t
t A

A

k
αkα

k

A
y &&& 1  and 

( ) ttt k
αmν

α

f

ff
k

mν

α
A &&&

−
=








′
′′

−=
1

1
2

, 

( )
( ) 









−
+−








=

t

t

α

t

t
tt

A

k

αmν

α
α

k

A
ky

1
1

2

&& , and thus ( )
( ) 









−
+−=

t

t

t

t

t

t

A

k

αmν

α
α

k

k

y

y

1
1

2&&
. Because 

( ) tt k
αmν

α
A

−
=

1
, ( )[ ]

t

t

t

t

t

t

k

k
αα

k

k

y

y &&&
=+−= 1 . Hence 

t

t

t
t

t

t
t

t

t k

k

c

c

y

y &&&

∞→∞→∞→
== limlimlim = constant. 

(Step 2) Because ( ) 







+−








= t

t

t
t

α

t

t
t A

A

k
αkα

k

A
y &&& 1  and 

( ) tt k
αmν

α
A &&

−
=

1
, 

( )








+

−








=

t

t

α

t

t
tt

A

k
α

α

αmν

k

A
Ay

2
1

&& , 

and thus 
( )

t

t

t

t

t

t

A

A
α

α

αmν

k

A

y

y &&&
+

−
=

2
1

.  Because 
( ) tt k

αmν

α
A &&

−
=

1
, ( )

t

t

t

t

t

t

A

A
α

k

k
α

y

y &&&
+−= 1 . Hence, 
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( )
t

t

t

t

t

t

t

t

A

A
α

k

k
α

k

k

y

y &&&&
+−== 1  and thus

t

t

t

t

A

A

k

k &&

= . Therefore 

t

t

t
t

t

t
t

t

t
t

t

t k

k

c

c

A

A

y

y &&&&

∞→∞→∞→∞→
=== limlimlimlim =constant. 

                                                                  Q.E.D. 

 

     These three lemmas indicate that the steady state growth rate 

( )











−−−−







= −

∞→
θδnα

mν

α
ρ

c

c α

α

t

t

t
1lim

&
 is independent of the number of population and is not under 

strong influence of population growth, which clearly shows that the model is free from both 

scale effects and the strong influence of population growth and has the property that the growth 

rate of output is determined by the Euler equation such that 

( )











−−−−







= −

∞→
θδnα

mν

α
ρ

c

c α

α

t

t

t
1lim

&
.

9
 This model thereby can satisfy the criteria for an 

endogenous growth model that is used for estimation of EIS in a production economy. Because 

it is a model of a production economy, no interest rate is included in the Euler equation. We 

therefore can estimate EIS in a production economy by the model without information on 

interest rates or returns on assets. 

 

2. The estimation method 

     The equation that is used for the estimation is shown in the following proposition. EIS is 

expressed without interest rates or returns on assets in this model when an economy is on a 

steady state growth path described in the above three lemma.  

 

                                                           
9 The growth rate of consumption is affected by the growth rate of population n, but, unlike Jones’ (1995b) model, 

the growth rate of population is clearly not an essential factor for the growth of consumption.  
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Proposition: 

θδn
k

y

c

c

ρ

t

t

t

t

t

−−−
=

∞←

&
lim

. 

 

Proof: By lemma 1, ( )











−−−−







= −

∞→
θδnα

mν

α
ρ

c

c α

α

t

t

t
1lim

&
. On the other hand,  

( )
t

tα

α

k

y
α

mν

α
=−







 −
1  because α

t

α

tt kAy
−= 1  and 

( ) tt k
αm ν

α
A

−
=

1
. Hence, 

θδn
k

y

c

c

ρ

t

t

t

t

t

−−−
=

∞←

&
lim

. 

                                                                  Q.E.D. 

 

     The equation includes the limit of the growth rate of consumption 
t

t

t c

c&

∞←
lim . However, if 

the number of population is sufficiently large and thereby it is possible to assume that 

approximately 
( )

( )
1

1

1
=

+−
−

ααmL

αmL

t

t  and 
( )

0
1

=
+− ααmL

αn

t

, it is not necessary to know the limit 

of the growth rate of consumption. Usually the number of population is sufficiently large in 

most industrialized economies and thus it seems natural to assume that 
( )

( )
1

1

1
=

+−
−

ααmL

αmL

t

t  and 

( )
0

1
=

+− ααmL

αn

t

.
10

  

 

Corollary 1: If the number of population Lt is sufficiently large and thus approximately 

                                                           
10

 See Harashima (2004). 
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( )
( )

1
1

1
=

+−
−

ααmL

αmL

t

t  and 
( )

0
1

=
+− ααmL

αn

t

, then 

θδn
k

y

c

c

ρ

t

t

t

t

−−−
=

&

. 

 

Proof: By lemma 1, ( )











−−−−







= −

∞→
θδnα

mν

α
ρ

c

c α

α

t

t

t
1lim

&
. If Lt is sufficiently large, 

( )











−−−−







= −
θδnα

mν

α
ρ

c

c α

α

t

t 1
&

, and thus 
t

t

t

t

t c

c

c

c &&
=

∞→
lim . Hence, by proposition 1, 

θδn
k

y

c

c

ρ

t

t

t

t

−−−
=

&

 if Lt is sufficiently large. 

                                                                  Q.E.D. 

 

     Corollary 1 indicates that given the proper values of α, n, δ, θ as well as the growth rate of 

consumption 
t

t

c

c&
 and the output/capital ratio 

t

t

k

y
, EIS in a production economy can be 

estimated without information on interest rates or returns on assets.  

 

3. EIS and the rate of time preference 

     An appropriate value of the rate of time preference (RTP) needs to be given in order to 

estimate EIS. One way to obtain the value of RTP is to use the equation derived in models with 

exogenous technological progress such that δn
k

y
θ

t

t −−
∂
∂

=  at steady states, i.e. RTP equals the 

marginal product of capital plus some adjustment terms. This is the familiar relation derived 
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from the Euler equation when models with exogenous technological progress are used.11 Most 

previous estimates of RTP at the macro level basically used this relation. However, in the model 

in the paper, RTP does not necessarily equal the marginal product of capital plus some 

adjustment terms on steady state growth paths. RTP may generally equal the marginal product 

of capital plus some adjustment terms but it is not guaranteed in the model. 

     Nevertheless, because it seems that there is no other appropriate estimate of RTP at the 

macro level than estimates based on this relation, the second best way to calibrate RTP in the 

model appears to assume that the relation δn
k

y
θ

t

t −−
∂
∂

=  holds still in the model and to use an 

estimate of RTP based on the relation. If an estimate of RTP based on this relation is used, the 

estimation of EIS in the model can be simplified. The estimation of EIS requires only the values 

of α, 
t

t

c

c&
 and 

t

t

k

y
.  

 

Corollary 2: If δn
k

y
θ

t

t −−
∂
∂

=  and if the number of population Lt is sufficiently large, then 

t

t

t

t

c

c

αy

k
ρ

&
= . 

 

Proof: Because ( )
t

t

t

t

k

y

k

y
α−=

∂
∂

1 , ( )
t

t

t

t

t

t

t

t

k

y
θδn

k

y

k

y
θδn

k

y
ααα =−−−−+=−−− 1 if 

δnθ
k

y

t

t ++=
∂
∂

. By corollary 1, if the number of population Lt is sufficiently large, 

                                                           

11 The Euler equation is 







−−−

∂
∂

= θδn
k

y

c

c

t

t

t

t ρ
&

, and 0=−−−
∂
∂

θδn
k

y

t

t  at steady state because .0=
t

t

c

c&
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θδn
k

y

c

c

ρ

t

t

t

t

−−−
=

&

. Hence, If the number of population Lt is sufficiently large and if 

δnθ
k

y

t

t ++=
∂
∂

, then 

t

t

t

t

c

c

αy

k
ρ

&
= . 

                                                                  Q.E.D. 

 

IV. THE ESTIMATION OF EIS IN A PRODUCTION ECONOMY 

 

1. Estimates in the previous literature 

     EIS or the degree of relative risk aversion (RRA) 12 at the macro level has been estimated 

mostly based on endowment economies and using information on interest rates or returns on 

assets in the previous literature.13 Estimates disperse widely from near zero to over unity. 

Mehra and Prescott (1985), Hall (1988), Campbell and Mankiw (1989), Kandel and Stambaugh 

(1991), Cochrane and Hansen (1992), and Obstfeld (1994) argue that EIS is near zero, i.e. RRA 

is 10 or much larger. On the other hand, Arrow (1971) and Hansen and Singleton (1982, 1984) 

argue that EIS is unity or much larger, i.e. RRA is unity or much smaller. Epstein and Zin 

(1991) use a recursive utility function and argue that EIS is spanning the range from 0.05 to 1 

and RRA is spanning the range from 0.4 to 1.4. Ogaki and Reinhart (1998) suggest that EIS is 

around 0.4, and Jorion and Giovannini (1993) argue that RRA is 5.4 - 11.9.  

 

2. The estimation of EIS in a production economy 

     To begin with, the values of the share of labor input α, the growth rate of population n, the 

                                                           
12 RRA is the inverse of EIS if a constant elasticity utility function is assumed. 

13 There are also numerous estimates of EIS at the micro level that has been estimated based on various micro data in 

many field or experimental researches. 
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rate of depreciation δ, the growth rate of consumption 

t

t

c

c&
, and the output/capital ratio 

t

t

k

y
 are 

calibrated. Those variables and parameters usually take roughly same values across 

industrialized economies. Here the following typical values that are roughly same as those 

observed in the U.S are used.14     

 

          The share of labor input α : 0.7 

          The output/capital ratio 

t

t

k

y
: 0.33 

          The annual growth rate of consumption 

t

t

c

c&
: 0.02  

          The annual growth rate of population n: 0.01 

          The annual rate of depreciation δ: 0.05 

 

The remaining parameter RTP is calibrated based on the Euler equation in a model with 

exogenous technology shocks such that ( ) δn
k

y
αθ

t

t −−−= 1  as was argued in the previous 

section. By the above values of α, 
t

t

k

y
, n and δ, RTP is estimated to be 0.039. The result that 

RTP is 4 % annually appears similar to most previous estimates based on the Euler equation in 

endowment economy models. By using this value of RTP, i.e. 039.0=θ , EIS is estimated by 

the equations in corollary 1 and 2:  

 

     The elasticity of intertemporal substitution: 0870.
c

c

αk

y

θδn
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14 The values are roughly same as those used for the calibration of the U.S. economy in Cooley and Prescott (1995). 
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     The degree of relative risk aversion: 6.11
1
=

ρ
  

 

     The result that EIS = 0.087 may be seen as a middle or a little lower estimate compared 

with estimates in the previous literature. Since the estimate in the paper does not use 

information on interest rates or returns on assets, it is basically independent of the estimates 

based on endowment economies for which information on interest rates or returns on assets are 

essential. Hence, the estimate provides independent evidence that supports the conjecture that 

EIS at the macro level is not unity but is much lower like 0.1 and RRA at the macro level is as 

high as 10 as Mehra and Prescott (1985), Hall (1988), Campbell and Mankiw (1989), Kandel 

and Stambaugh (1991), Cochrane and Hansen (1992), and Obstfeld (1994) argue. 

 

V. CONCLUDING REMARKS 

 

     EIS at the macro level has been estimated mostly based on endowment economy models. 

Because an exogenously given real interest rate represents all aspects of production in 

endowment economy models, information on interest rates or returns on assets are indispensable 

to estimate EIS. A problem of this estimation method is that estimates are very sensitive to the 

choice of interest rates or returns on assets. To escape this problem, it is necessary to estimate 

EIS in a production economy. However, it is difficult to estimate EIS in a production economy 

if a model without a mechanism of endogenous growth is used. Furthermore, endogenous 

growth models have serious drawbacks: scale effects and the strong influence of population 

growth. In order to estimate EIS in a production economy, therefore, an endogenous growth 

model that firstly is free from both scale effects and the strong influence of population growth 

and secondly has the property that the growth rate of output is determined by the Euler equation 

is needed. The paper constructs such an endogenous growth model and estimate EIS in a 
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production economy based on the model. 

     By using the calibrated value of the rate of time preference 039.0=θ , EIS is estimated 

to be 0.087. It may be seen as a middle or a little lower estimate compared with estimates in the 

previous literature. Since the estimate in the paper does not use information on interest rates or 

returns on assets, it is basically independent of the estimates based on endowment economies 

for which data on interest rates or returns on assets are essential. Hence, the estimate in the 

paper provides independent evidence that supports the conjecture that EIS at the macro level is 

not unity but is much lower like 0.1 and RRA at the macro level is as high as 10. 
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